
1

GEG 4019
Undergraduate Research Project

Geospatial Metadata Visualization

Supervisor Dr. Sawada

Second Reader Dr. Bannari

Student Julien McArdle

Student no 3270515

2

Acknowledgments
I wish to express my sincerest thanks to

Dr. Sawada for presenting me with the idea
that became this project, as well as my parents
for their incredible and never-ending support.

Globe cover image by Barun Patro
Reproduced under license.
http://www.barunpatro.com/

3

Section 1: Introduction ... 5

1.1 Abstract .. 6

1.2 A Note on Writing Conventions 6

1.3 Introduction ... 7

Section 2: Metadata Parser ... 8

2.1 Metadata Parser Introduction 9

2.2 The Metadata Parser 10

2.2.1 Installing the Metadata Parser.................... 10

2.2.2 Using the Metadata Parser......................... 11

2.3 Application Development 17

2.3.1 Wapache vs. Alternatives........................... 17

2.3.2 Changes to Wapache................................. 21

2.3.3 Software Development Tools..................... 22

2.3.4 Third Party Code and Resources................ 25

2.4 Analysis of the Metadata Parser 27

2.4.1 Source Code Structure................................ 27

2.4.2 Inner-Functioning of the Metadata Parser... 30

2.4.3 Known Bugs... 39

2.5 Discussion .. 41

2.5.1 Code Portability... 42

2.5.2 Development of Plug-Ins............................ 43

2.5.3 Future Development................................... 44

Section 3: Conclusion ... 45

3.1 Conclusion .. 46

3.2 Notes .. 46

3.3 Reference .. 47

Appendix I: Pictographs .. 48

Appendix II: Code ... 54

4

Table of Contents

SECTION 1
Introduction

5

1.1: Abstract

he dependence on text to present geospatial metadata files may hinder an individual's ability to

quickly interpret the information. Presenting the same information as a series of simple

symbolic pictures simplifies the absorption of information, which may be useful when evaluating a

number of metadata files.

T

The Metadata Parser is computer software developed for the purposes of this research project. It is

designed to automate the process of converting text metadata files into a visually rich format. It was

conceptualized by Dr. Sawada, and was developed by myself over the period extending from October

2007 until February 2008. The application is Windows compatible, and at this stage reads only FGDC

formated XML metadata files. An integrated plug-in system, however, means that the program could

also be expanded to incorporate more metadata standards in the future.

1.2: Writing Conventions

o reduce potential confusion during the reading of this paper, a few writing conventions have

been adopted. They are explained in the table below.T
Writing Conventions Table

Hello World! Default text formatting.
Wapache.exe, parser Computer files and directories.

foobar() Computer code.

6

1.3: Introduction

Metadata” is a term used to denote documentation that describes the characteristics of a

data set (Michener et al. 1997). Within a geospatial environment, this extends to notions

of location, resolution, acquisition methods, agencies responsible for maintaining the content, and so

forth.“
However, the dependence on text to convey that information can also make geospatial metadata

unwieldy for quick interpretation. For instance, in order to assess the type of data at hand, a geomatics

specialist may have to sift through line upon line of obscure metadata content to find what he/she

needs.

An alternative to this traditional means of presenting metadata has been propositioned by Dr. Michael

Sawada, director of the Laboratory for Applied Geomatics and GIS Science (LAGGISS) at the

University of Ottawa. The idea consists of presenting the otherwise text metadata content as a series of

simplified illustrations. To that extent, the research question for this undergraduate research paper

becomes whether such an option is viable on a practical level.

The answer to this question is presented in the form of the Metadata Parser, geospatial metadata

visualization software. The Metadata Parser is a computer program developed for the purposes of this

research, which provides a functional demonstration for the conversion of text-based metadata files

into a visually rich, picture-based, format.

7

SECTION 2
Metadata Parser

8

2.1: Metadata Parser Introduction

he Metadata Parser is the name of the computer program developed for the purposes of this

undergraduate research project. It serves as a means to exemplify a tangible avenue through

which metadata can be visualized.

T
The program's essential mode of operation is to interpret text geospatial metadata files and produce a

visually rich document containing a series of pictographs. For instance, if a user selects a metadata file

that describes a vector data file of the road network in Alberta, then the program will generate a new

document containing symbolic images representing the notion of roads and the province of Alberta.

The Metadata Parser is based on the concept of visualizing metadata, proposed by Dr. Sawada of the

University of Ottawa. The program was developed over a period covering from October 2007 until

February 2008, and the final revision, which includes an experimental plug-in, was released on March

1st, 2008.

9

Illustration 1: The conversion from text metadata into a visual format by
the Metadata Parser. Raw metadata content on the left, and the interpreted
iconified representations of the content on the right.

2.2: The Metadata Parser

uch in the same way that the Metadata Parser was designed to simplify the interpretation of

metadata files through their visualization, the general design philosophy was also to create

an application that would be simple to use. As such, text in the application interface is large and kept at

a minimum, a two pane comic is used to introduce the concept behind the purpose of the application,

and the whole program is presented as an approachable wizard.

M

2.2.1 Installing the Metadata Parser

nstalling the Metadata Parser is straight-forward. Once the user obtains the installation executable,

which is also available in the DVD included with this paper, they simply need to start it to begin

the installation wizard.

I

10

Illustration 3: Installation wizard guiding the user
through the installation.

Illustration 2: Starting the Metadata Parser
installer.

After these steps have been completed, the Metadata Parser will be installed, and there will be icons

present on both the desktop and the “Start” menu.

2.2.2 Using the Metadata Parser

he Metadata Parser is made up of two parts: the “wizard”, which guides users to input the

proper information for processing, and the “report”, which displays the visualized metadata.

Starting the Metadata Parser is as easy as launching it from the desktop or the Start Menu. In this

particular computer for the demonstration, the icon is stored in an application launcher on the left hand

side of the screen.

T

11

Illustration 4: Continuing the installation wizard. Illustration 5: The installer copying the files onto
the computer.

Illustration 6: Starting the Metadata Parser from
the application launcher.

When the Metadata Parser is started, it will greet the user with an introductory two pane illustration

visually explaining the purpose of the application. In the bottom of the window are also buttons that

provide the user with either the option to see the credits for the program, or to begin the wizard.

If the user chooses to begin the wizard, he/she is treated to the first step of the wizard. In this step, the

user is asked to select a metadata file.

12

Illustration 7: Introductory window for the Metadata Parser, including a
two pane illustration visually describing the purpose of the application.

Illustration 8: The first step in the Metadata Wizard, which asks the
user to select a metadata file.

Failure to select a metadata file, or to select an XML formatted file, will result in an error. Continuing

with the philosophy of ease-of-use, the user is informed of the error in plain English.

With the successful selection of a metadata file, the user will be passed onto the metadata type

selection. This is where the user tells the wizard what standard the metadata file uses, so that it can be

properly interpreted by the program. Though the current release of the Metadata Parser only supports

the Federal Geographic Data Committee (FGDC) metadata standard, an elaborate plug-in system

allows developers to add support for additional metadata types.

13

Illustration 9: The Metadata Parser producing an error to
the user, who selected a file that wasn't formatted in XML.

Illustration 10: Choosing the metadata standard. In the
current experimental Metadata Parser release, there is a
second FGDC parser which is absent in the standard edition.

The “Automatic” function seen in the illustration above is not yet fully implemented. Initially designed

to analyze a metadata file to determine its type, its development was axed due to time constrictions. As

it stands, using “Automatic” mode will default the user to the regular FGDC parser. Once the user

selects the appropriate metadata type, they can then proceed to the final step in the wizard:

confirmation. It is at this stage that the user verifies that the right file, and parser, were selected. Once

everything checks out, the user can complete the wizard by pressing the “Finish” button.

Upon pressing the “Finish” button in the wizard, a new window will launch containing the visualized

metadata. The contents of the window is dependent upon the metadata, and the selected type. Selecting

the regular FGDC parser, for instance, will yield a window akin to the following illustrations.

14

Illustration 11: The last step of the wizard for the Metadata Parser: the
confirmation window .

15

Illustration 12: The Metadata Parser's“report” window featuring the visualized
metadata.

Illustration 13: The “report” window continued.

However, if the user selects the experimental parser, than they will see something more akin to the

following image.

From this window, the user is also able to print the document, export it as an HTML file, or utilize

debugging functions useful to the development of further parsers.

16

Illustration 14: Report window featuring the experimental FGDC parser. The
experimental parser analyzes all metadata files that are found within the same
directory as the file that was chosen in the wizard.

2.3: Application Development

he Metadata Parser was developed for the Wapache application framework, a development

solution which allows programmers to code full-fledged applications using the same

programming languages that are prevalent in web development1. The end result is a flexible, portable,

yet powerful, platform with which to create software.

T

2.3.1 Wapache vs. Alternatives

he power of Wapache as a development platform comes from the power afforded to it by the

web development languages it supports. These languages are HTML, CSS, JavaScript, and

PHP.

T
HTML stands for HyperText Markup Language, and serves as the backbone of the common web page.

It contains the data to be presented, and handles the general formatting of things. CSS, or Cascading

Style Sheets, is a newer language which has for its purpose the handling of the presentation of elements

within HTML or other markup languages. JavaScript is a client-side scripting language, which despite

its limitations brings a level of interaction with the web content that is absent from HTML and CSS.

PHP (PHP: Hypertext Preprocessor) on the other hand is a robust server-side scripting language. It is

able to read and open files, perform complex algorithms – in essence afford the developer the same

kind of programming flexibility found in traditional software development. None of these aspects

change within Wapache – HTML still handles the data and formatting, CSS the looks, Javascript the

dynamic interactivity with the content, and PHP the processing.

17

What's important to note here is that all four of these languages are scripting languages. This is unlike

traditional software programming languages, such as C and C++, which compile into executable

binaries. Rather, the code here is parsed on-the-fly by Wapache. This allows the code to be modified

and tested instantly, without the need for potentially lengthy compiling which is a necessity with other

traditional software development languages.

To better understand the other benefits of Wapache, it is important to understand exactly just what

Wapache is. The Windows® program is an integrated and portable combination of a web browser

(Microsoft Internet Explorer), a web server (Apache), and a virtual machine (Zend Engine.) Each

application running on Wapache includes these three elements.

18

Illustration 16: Model of the Wapache application as
determined through reverse engineering. Wapache includes a
built-in browser and web server, which call external resources
if necessary. They also retrieve the source code and
configuration files from elsewhere in the application
directories.

Embedded
Internet Explorer

Embedded Apache
Web Server

SOURCE
CODE

Internet Explorer
Rendering Engine

DEFAULT.WCF

Apache
Libraries

Zend
Engine

Wapache Application

Illustration 15: A typical Wapache window. The code that determines the appearance of
the application are stored in different locations. The code for the general design of the
window is held in the default.wcf file, while the contents are held in the root source code
folder.

Much like a traditional web server-client relationship, the server acts to retrieve the source code and

send it to the client. The client, in this case the embedded Internet Explorer browser, then parses and

displays the code as the appropriate visual elements. If the need arises, code can also be transferred to

the Zend Engine virtual machine for processing2.

The manifestation of the source code as rendered by Internet Explorer is displayed in the Wapache

application window (the blue area in the figure above.) The general window design (red area) is

handled by a configuration file called default.wcf. It is in that file that characteristics such as the

window size, the presence of scroll bars, menus, and so forth are defined. This last file does not use

web development languages for its content, but rather follows a proprietary scripting format unique to

Wapache, with tie-ins to Internet Explorer's Dynamic HTML (DHTML) application programing

interface.

This means that the graphical user interface (GUI), with the exception of the overall window design, is

actually implemented through the use of web development languages. It is this fact which underlies one

of Wapache's greatest strengths. Creating new elements in the application GUI can be as simple as

writing a short string of HTML. Making that element interactive is as simple as adding a bit more

HTML or Javascript.

HTML and CSS are presentation-driven scripting languages geared towards web content. By

supporting these, Wapache brings their ease of use to the program developer. To simplify matters even

more, the adoption of these languages means that a developer could use, if so desired, WYSIWYG

(What You See Is What You Get) editors tailored for HTML and CSS. Popular examples of such

editors include the open-source NVU or Adobe's (formerly Macromedia's) Dreamweaver. Such

19

applications can greatly decrease user interface development time.

PHP, on the other hand, provides solid processing capabilities to a Wapache application. It is a high

level programming language, which is more approachable than a lower-level programming language

common in software development circles. Unlike lower-level programming languages, developers in

PHP do not have to deal with time-consuming resource management, nor do they have to deal with an

abstract machine-code oriented programming style. Instead, they can focus directly on software

development that's more akin to pseudocode than to C or C++.

Furthermore, a number of software libraries are included with PHP that save even more time for the

developer. Of particular interest for the purposes of this project are the GD Library, which allows for

image creation and manipulation, as well as Expat Library, which allows for XML (eXtensible Markup

Language) parsing. These files allow for complex operations to be accomplished in PHP without the

need for complex code. Instead, the developer can simply call these functions, which then handle the

relatively simple inputs submitted by the developer. The presence of these libraries provide a developer

with approachable deep functionality while simultaneously cutting on development time.

Another perk that arises from the usage of these languages is the debugging process. Syntax in HTML

is fairly loose, and programming mistakes may have minimal repercussions on the code's overall

functionality, if any at all. Likewise with CSS. JavaScript is less forgiving, but the built-in error

checking that's included in Wapache's embedded web browser identifies exactly where in the code

faults are occurring, eliminating the possibility of a wild goose chase as the programmer attempts to

find the error. The Zend Engine is likewise kind to developers, providing them with helpful error

messages that greatly cut down on debugging time.

20

However, there are also a number of significant disadvantages that hinder Wapache's suitability as a

replacement for traditional software development platforms. First of all, Wapache's high level language

approach means that it is not as efficient in using the computer processor as a lower-language code that

more directly in tune with machine architecture. Furthermore, despite the great boons afforded to

development through the use of web development languages, there are some inherent limitations by

this adoption. The content is not designed for continuous updates, which makes tasks such as

incorporating video playback or basic 3D modeling exponentially more difficult than in any other

traditional programming environment.

All-in-all, Wapache provides developers with an application development environment that's powerful,

yet simple to use, easy to debug, and fast to code for. These are the reasons for which it was adopted

for this research project. It is thus perhaps surprising to hear that Wapache is not terribly well known.

According to the statistics provided by its web host, SourceForge, only eleven copies of the software

were obtained during the month of its adoption for this project3.

2.3.2 Changes to Wapache

hile the generic executable included with Wapache was suitable for this project's needs, a

number of aesthetic changes were implemented to customize it to this project. The tool of

choice to carry out these changes is called ResHacker. It was developed by Angus Johnson, an

Australian programmer, and was last released in 2002. This program decompiles executables, and

allows certain application elements to be altered4.

W

21

To that extent, ResHacker was used to modify the icon for the generic Wapache executable. The default

feather icon was replaced with a more suitable Globe icon, which was obtained from a free icon library

created by Bogdan Condurache.

The executable was also renamed from Wapache.exe to

mdparse.exe (“Metadata Parser”.) The basic directory structure of

Wapache also underwent a minor change: the name of the htdocs

folder was changed to source, to better reflect the content held

within.

The Apache configuration file (part of default.wcf) was also edited to treat text files with the .djpg

extension as PHP code to be processed. This is part of the Dynamic JPEG file format that was created

for the purposes of this project, the details of which will be examined later in the paper.

2.3.3 Software Development Tools

apache servers as a platform with which to run code, but it does not provide a means with

which to actually write the code. For that, the developer needs to find a text editor. For basic

code, the default text editor that comes bundled with Microsoft's Windows® operating system, Notepad,

is sufficient.

W

However, Notepad does have a number of significant limitations. It is unable to open more than a

single file at a time, it does not number the lines of text, it's undo function is limited to a single

undo/redo, and it does not provide syntax highlighting. The inability to open multiple simultaneous

22

Illustration 17: Old and new
Wapache icons compared.

files means that the developer is either forced to constantly close/open new files, or have multiple

instances of Notepad open at the same time. A lack of line numbering makes it difficult to identify the a

line containing erroneous code as identified in the debugging process, especially in files involving

hundreds of lines of code. The poor implementation of the undo function means that multiple changes

to the code cannot be reverted. Finally, a lack of syntax highlighting, which differentiates different

constructs in code, reduces the general readability of the code.

For that reason, an alternative text editor was adopted for the development of the Metadata Parser. It is

an open-source tool developed by Don Ho that is called Notepad++, and that is freely distributed under

the General Public License. Unlike Notepad, it supports multiple document tabbing, multiple undos,

synatax highlighting, and other features that simplify development.

23

Illustration 18: Notepad++ in action.

To create the graphics used in this project, an additional set of programs were used: Inkscape, Gimp,

and Adobe's PhotoshopTM. The first two programs can be downloaded for free, and as they are open-

source and distributed under the General Public License, software developers are free to modify the

code and improve the program.

Inkscape is a tool to create and edit vector images. In the development of the Metadata Parser, it was

used to create most pictographs (see illustration above), as well as a number of other incidental images

used in the program. Gimp is a raster graphic editing program, functionally similar to Adobe's

PhotoshopTM. It was used to create more pictographs, icons, as well as backgrounds. PhotoshopTM was

to be the raster graphics editor, but its use was quickly supplanted by the free Gimp in the early stages

of development. The push for the switch was due to licensing issues with Adobe's product.

24

Illustration 19: Inkscape in action during the development of the Metadata Parser.

2.3.4 Third Party Code and Resources

he current version of the Metadata Parser is made up of 1,855 lines of code. To facilitate

development, and to fill the knowledge gaps with PHP, some of this code was borrowed from

other sources. The borrowed code is listed in the table below, in order of descending importance:

T
External Code Assets

I te m Author Overview

XML Parsing
Code

Kevin Yank While the current XML parsing code in the Metadata Parser is

unrecognizable from Kevin Yank's implementation, his code

was the figurative Rosetta Stone in understanding how PHP

handles XML. The parsers included in the program are based on

his work.
Hide/Show

Script
Will Bontrager A hybrid of JavaScript and CSS, this code allows segments of

the visualized materials to be shown or hidden at the behest of

the user. This code was condensed for the purposes of this

project.
Random

Character
Generator

Bill Pellowe This code is integral to the functioning of the Hide/Show Script.

File Extension
Identification

Angela Bradley This code is used in different parts of the program, including for

error detection, as well as identifying plug-in files.

Images from the royalty free stock photography website, stock.xchng (www.sxc.hu) were also used in

the development of the Metadata Parser. Modified versions of these images served as the backgrounds

for the credits window in the program, as well as the title graphic in the wizard.

25

http://www.sxc.hu/

Other third-party resources are delineated in the table below:

External General Assets
I te m Author Overview

Fonts Ray Larabie &
Hans Zinken

The fonts developed by these two individuals are integrated into

the static and dynamically generated images of the Metadata

Parser.
Application

Icon
Bogdan

Condurache
The main program icon for the Metadata Parser is a globe

graphic designed by Bogdan Condurache.
Sounds AT&T Labs &

Partners in
Rhyme

The synthesized voice provided by AT&T Labs' Text-to-Speech

engine serves as the vocal declaration upon the successful

completion of the Metadata Parser's wizard. Sound effects by

Partners in Rhyme are used to alert users to program errors.

26

2.4: Analysis of the Metadata Parser

The Metadata Parser can be thought of as being made up of two components: the Wapache application

framework, and the source code. The Wapache framework is the generic environment which allows the

source code to run and be turned into Windows®-compatible programs. Without Wapache, the source

code is just a collection of innate text and picture files. Without the source code, Wapache has nothing

to process and therefore nothing with which to produce programs.

The term “source code” is a bit of a misnomer, because source code does not necessarily entirely

consist of code. While the executable portion of the program is indeed generated from the code, it may

also rely on additional resources such as images and sounds for its creation.

While the previous section focused more on Wapache, this section will focus on the source code which

truly makes the Metadata Parser what it is.

2.4.1 Source Code Structure

he source code in the Metadata Parser can be broken into three components: pages, which are

the fundamental building blocks that produce the content seen in the windows and call T
27

Illustration 20: An abstracted representation of the Metadata Parser,
application and it's two major sub-components: the Wapache
framework, and the source code.

Wapache Framework Source

Metadata Parser

additional resources, called code, which are code segments called on-demand by the pages, and

audiovisual resources, such as pictures and sound effects.

With respect to the directory structure of the source code,

the pages reside in the root directory of the source code. The

called code are stored in separate directories, depending on

their purpose. These directories are css, parsers, and

scripts. The audiovisual resources are stored into two

directories: images for the pictures, and media for the sound

effects.

When a user is looking at the program credits, or one of the steps in the wizard, or any other window in

the Metadata Parser, they are looking at the product from the Wapache framework parsing of one of

the source code's eight rudimentary pages. These pages are the fundamental building blocks of the

program: they set up the basic layout of the window, .include the code that processes events and files,

and calls in images and further code if necessary. The page are typically made up of a mix of HTML,

PHP, and JavaScript.

The pages are also independent. They do not interact with each other at all, though they can link (send

the user) to one another. This complicates the matter of sending information from one page to another,

the solution to which will be discussed later on.

28

Illustration 21: Directory Layout of the
Metadata Parser's source code, as
generated by Microsoft's tree program.

When the Metadata Parser begins, the first page the user will see will always be the index page. The

term is derived from the web development world, in which the “index” page is the default web page to

be called in a directory. The index page in the Metadata Parser is that introductory window seen in

Illustration 7.

It is important to note that the user is only able to navigate between these pages by the links provided

on those pages. This constricts the user to follow a certain program flow, as delineated in the following

illustration.

As an example, a user who is on the page “Step 1”, that is to say the page that represents the first step

of the wizard, can only go on to “Step 2” or backtrack to the index page.

External to these pages are the called code. These external files contain additional segments of code

which can be integrated into the pages on demand. There are many advantages to externalizing the

code. For one, this reduces the complexity of the pages by having lines of code outsourced to other

files. Furthermore, repeating portions of code can be represented a single time through the use of one of

these external files, further cutting down the size of the pages. Other practical applications exist as

29

Illustration 22: Links between the eight pages that make up the Metadata Parser.

INDEX STEP 1 STEP 2

STEP 1
ERROR #2

STEP 1
ERROR #1

STEP 3

CREDITS

REPORT

well. For instance, take the report page, which is responsible for visualizing the metadata. This page

calls the code for the right parser from a matching external file, and integrates that code into itself to

then process the metadata file. This means that a single report page doesn't have to contain all the

parsers in its own code for it to work, it can just get the one it needs from one of those files.

2.4.2 Inner-Functioning of the Metadata Parser

nalyzing all the 1,855 lines of code verbatim that make up the source code for the Metadata

Parser would be both unwieldy and a confusing means through which to explore the operation

of the application. Instead, this report will speak generally of the source code and the inner-

functionality of the program. The full source code can be found in the appendix of this report.

A

2.4.2.1 The Metadata Parser's Wizard and the Report Window

The Metadata Parser's wizard is made up of an index page, a credits page, and three steps. The index

page serves as the introduction to the wizard, providing the user with basic information as to the

purpose of the application. The index page contains links to the credits, and the first step of the wizard

(see Illustration 22.)

The credits page serves to credit the work of those on which this project was reliant. These listed names

are then all scrolled upwards, similarly to a end-credits scene in a movie. This list of credits, however,

is not static. While fourteen basic names will always appear, more names can be dynamically loaded

from the list of parsers. This is part of the plug-in framework employed by the application, which aims

to create a platform whereby users can “drag 'n drop” new parser files into the application, without

requiring any additional programming in order to integrate them into the program.

30

The plug-in framework isn't a consolidated set of code, but rather bits of code here and there in the

overall application that combine to create the “drag 'n drop” functionality. In the case of the credit page,

a segment of code will check the parser directory for parsers. If it finds any, it will check every parser

and obtain it's author, and will then use that name in conjunction with the parser's filename to generate

the appropriate credits.

Moving on from the credits are the three steps of the wizard. The first step is tasked with having the

user identifying the metadata file to be visualized. The second step is tasked with identifying the

metadata type, and thus the parser which will process it. Finally, the third step serves to confirm the

details.

In terms of its code, the page representing the first step is much like the index page – relatively short

and straightforward. To store the information given to the application by the user, the program uses the

31

Illustration 23: Credits window. The "Sounds By" credit is static, the credits for
the two parsers are dynamically loaded into the application.

POST method to pass the data onto the page of the second step, which then stores the information for

later retrieval by using PHP sessions. The POST method is the traditional means by which to submit

data to websites, and is applicable to the Wapache framework as a means to submit information into

itself. Sessions are a means to store data on a per-user basis5. This circuitous approach of using both the

POST and session techniques are necessary in order to circumvent the limitations placed by using the

HTML construct that serves to browse and select our metadata file for visualization.

The second step takes the metadata file's location submitted to it and stores it. However, it will also

analyze the submitted file to make sure that it is valid. This comes in the form of two checks. The first

is to determine whether the user submitted any file at all for analysis. If the user did not, the program

will evaluate whether that's because a metadata file was actually already selected beforehand, a

possibility if the user was backtracking to the second step from the third. The second check is to

determine whether the file in question is an XML file. It does so purely by reading the extension of the

file, those three letters following the period at the end of the file name. If those checks fail, the user is

automatically forwarded to an error page, the content of which is reflective of the nature of the

problem. These error pages are identical to the first step in every respect, with the exception that they

contain additional text detailing to the user the nature of the error.

The second step is also tasked with having the user selecting the parser to process the metadata file.

The parser listings are entirely dynamic. The program will look in the parser directory for parsers, and

list them. The name for the parsers that is displayed on this page is pulled from the files themselves, at

specified locations within those files which is standardized across all parsers designed for the Metadata

Parser. Furthermore, the very display of the page is dynamic. The presence of scroll bar will

automatically be added to the window that lists the parsers if the program detects that more than three

32

parsers are to be present.

The third step takes the new information from the second step and stores it. It will then retrieve the

stored information of the metadata file's location, as well as the parser selected, in order to present it to

the user for the purposes of confirming their choice. A link is present to launch the report window.

The report window presents the user with the visualized metadata file. In order to visualize the

metadata, however, it first loads in the metadata file's location and the parser that the user chose from

the stored data in the PHP session as variables. It will use the parser variable to load in the code for the

appropriate parser into the report page, which will then use the variable for the metadata file's location

to actually process through the metadata file. It will also use the metadata file's location to extract the

metadata filename, which is then displayed beneath the main header of the report window. This is

exemplified in Illustration 24 where the filename is nrn_rrn_nl_4_0_fgdc_en.xml.

33

Illustration 24: The Metadata Parser's report window.

 The report window also loads the code for a random generator and a script to hide and show content

on-demand, which may be of use to parsers. There is also a script that checks the overall size of the

window, for unlike the window of the Metadata Parser's wizard, the report window is resizeable.

Therefore, it must ensure that the dimensions of the window aren't too small, or risk distorting the

contents of the window. As such, the program makes sure that the window is a minimum of 530 pixels

wide. Failure to meet this requirement will produce an error, which will be corrected upon the widening

of the window (see Illustration 25.)

2.4.2.2 Metadata Visualization and the FGDC Parsers

he are two FGDC parsers in the experimental release of the Metadata Parser, but they both

interpret and visualize the metadata in identical ways. The only thing that changes between the

two is the fact that one parser parses a single file at a time (see Illustration 12), while another will

T
34

Illustration 25: Error obtained when the window is resized to a width that is
considered too small for the proper viewing of the report's content. Resizing the
window to a larger “safe” resolution will automatically remove the error and
return the regular contents of the report.

process and display multiple files simultaneously (see Illustration 14.) The presentation is altered, but

the underlying mechanics remain the same.

The FGDC parsers have been geared towards the metadata content published by GeoBase, a distributor

of free geomatics datasets located at the Earth Science Sector of Natural Resources Canada6. It should

be noted that other producers of metadata might follow very different approaches to the content, while

still abiding by the FGDC standard. As this author's experience shows, even with the material produced

solely by GeoBase there's a certain level of heterogeneity with respect to the formatting and treatment

of content. As such, this parser was tailored to the files produced by GeoBase to increase this

applications effectiveness with regards to those files, and therefore enhance its ability to serve as a

successful technical demonstration.

Looking first at the FGDC parser that analyzes single metadata files, it breaks down the file into three

logical sections. The first section contains general information about the file: the title for the dataset,

the series to which it belongs, the nature of the data (ie. road network), the type of data (ie. vector,

raster, or tabular), the location of the dataset, the range of dates in which the data was collected for the

set. The second section contains more technical details: the resolution of the dataset, the datum and

ellipsoid used. The third section contains contact information for the office that published the data. The

other FGDC parser that analyses multiple files skip on the second and third sections.

The title and series of the dataset are not initially visualized, but rather presented in the title bar of the

first section. It should be noted that all three sections have a title bar, all of which feature a

“collapse/expand” button to hide or show that section at the behest of the user. To visualize the nature

35

of the data, the program calls a critical function called findbutton. This function takes two input

variables: the location of a library of images, and a string of text. It will then take each filename of the

pictures found in that directory of images, minus their extension, and try to match it to one of the words

in the string of text. If it finds a match, it will return the picture that represented that match. So for

visualizing the nature of data, the library of images in question is a repository of pictures representing

different types of data, such as road networks, river systems, satellite imagery, digital elevation models,

and so forth. The string to which they will be matched will be the title of the data set, and failing that,

the series. So for instance, if the series is entitled “The Road Networks in Alberta”, the program will

find that the picture “road.png” matches a word in the series name, and will therefore display that

image as the selected pictograph by the Metadata Parser. Adding new pictures to the library is as

simple as dragging and dropping new pictures into the appropriate directories. The program will

automatically include them upon its next search.

The visualization for the type of data, that is to say whether the data is in a vector, raster, or tabular

format, follows the same formula as the previous visualization process. The string of text in the

metadata file for the type of data is extracted by the XML processing functions of the parser. This string

is then matched to a series of images in a pre-defined repository of images. Successful matches are

presented to the user. Any external format not provisioned for are represented by an additional image

indicating the lack of success.

Visualizing the place for the dataset also follows a similar process, only the search through the image

repositories are done on a hierarchical basis. Three levels exist in the hierarchy: local, provincial/state,

and national/continental. On a local basis are cities such as Ottawa (represented by the city outline) and

Toronto (visualized as the CN Tower). On a provincial/state basis are all the Canadian provinces and

36

territories, plus a few recognizable American states. All these entities are represented by the outline of

their territory. On a national/continental level are a number of flags and outlines representing their

nation and/or continent. The Metadata Parser will first try to find a match for the string representing

the location of the dataset on the local level. If it fails to find a match, it will try to find one on a

provincial/state level, before moving on to the greater national/continental level. So for instance, a

dataset located in the community of Red Deer, Alberta, would have a pictograph with the outline of

Alberta representing it. A second dataset located in Sydney, Australia, would be represented with an

image of the outline of Australia.

Visualizing the timescale for the source data is done in a different manner. For that, the Metadata

Parser directly extracts the dates in question from the metadata file, and superimposes them onto a

base image. The combination is then exported as a new picture: the pictograph. To ensure legibility, the

size of the text is auto adjusting – it will try to be as large as possible, without exceeding the width of

the image. To do this, the program first superimposes text at the full font size of 36 points. It will then

measure the width of the resulting text. If it's too wide, it will reduce the font size by one unit, and

remeasure the dimensions. It will keep doing this until an appropriate width is found. Also to note is

that the code to do all of this is located in the image file itself. Unlike the wealth of static images that

are located in the image libraries, these are dynamic JPEGs. They are made up entirely of code, with a

traditional, static, image at its side to serve as the base picture.

The pictograph representing the resolution is also a dynamic JPEG. The pictograph can be one of three

images: a very pixelated satellite image, representing low-resolution, a mildly pixelated satellite image,

representing mid-resolution, and a crisp satellite image, representing high-resolution. The algorithm

determining which is selected is found within the dynamic JPEG itself. The process to determine which

37

resolution-level is appropriate to present is, however, extremely subjective. For the notion of resolution

is really dependent upon the geographic properties of the dataset. For instance, it would be fair to deem

ten meter resolution satellite imagery covering all of Ontario as high-resolution. However, the same

resolution applied to a dataset of satellite imagery focused on downtown Ottawa would not so easily be

considered high-resolution. The whole concept is relative. The Metadata Parser's system looks at the

resolution's units, as well as unit type. The attribution of units to resolution is defined by the following

table:

Resolution Interpretation by Units
METERS KILOMETERS DECIMAL DEGREES

Units Resolution Units Resolution Units Resolution

< 10 High < 1 High < 0.01 High
10-200 Medium 1-10 Medium 0.01-1 Medium
> 200 Low > 10 Low > 1 Low

One might wonder how 500 meters can be considered low-resolution, while 0.5 kilometers is

considered high resolution, given that both represent the same actual distance. This is because the

Metadata Parser pays heed to the connotation of the type of units involved. If the environment is being

measured in kilometers, it will use that as its frame of reference to determine resolution. The

assumption is the dataset is being measured in those units because it is most reflective of the general

dimensions of the data, and will therefore use that as a basis to set notions of resolution. It is a flawed

system, because of the unknowns involved. However, it's inclusion into the Metadata Parser was

substantiated on the basis of its value for demonstration purposes.

Both the datum and ellipsoid are presented much in the same way as the timescale, using dynamic

images that superimpose text onto a base picture. However, the text here is first processed to be

38

shortened. Long names such as “Geodetic Reference System” are recognized and represented as the

acronym “GRS.” With the datum, only the first, relevant word construct is taken and incorporated into

the pictograph to be shown to the user.

2.4.3 Known Bugs

here are two identified bugs in the Metadata Parser. The first occurs if the report is reprocessed

via the “Debug Tools” menu, when the user has simultaneously nulled parts of the information

stored in the PHP session. This nullification can be achieved by going back a number of steps in the

wizard window, to the page of the first step. In that particular page's code, there's a clause to reset the

information stored in the session. This resetting allows the user to start afresh and submit a new

metadata file for analysis, in line with the primary function of the page. Meanwhile, if this nullification

of the session occurs, the report window will display the error demonstrated in the following

illustration.

T

39

Illustration 26: Error produced by the Metadata Parser if the information stored in
the session is invalid.

The second bug is a visual offsetting of the contents of the wizard for the Metadata Parser. The contents

can be displaced if a user clicks on a segment of text, and then drags the mouse off the application to

the right. A resulting white area of approximately ten pixels at the right edge of the screen will appear.

The cause of this bug has not been exactly located, but the nature of the error suggests unknown

properties of a styled HTML element.

There is another issue worth discussing, although not technically a bug. The Metadata Parser only

seeks to find one image to represent the nature of the data, the location, and so forth. Therefore if

there's more than one location in a metadata file, the Metadata Parser will only show the first one it

can find a match to in its library of images. Such an adherence to only one item for visualization might

induce an inaccurate representation of the dataset to the user. However, the display of all potential

matches might at the same time over-saturate the content. There is no simple solution in the matter.

40

Illustration 27: White space visible from the visual offsetting bug present in the
Metadata Parser.

2.5: Discussion

hile the standard FGDC parser included with the Metadata Parser demonstrated the

feasibility of visualizing geospatial metadata, the second multi-file experimental parser,

demonstrated potential usage for such a system. An individual using this latter parser would have

absorbed the major characteristics of the datasets represented by the metadata files in a directory,

without undergoing the arduous task of reading through those metadata files individually. The

applicability of such a system becomes immediately apparent. For instance, if an individual is seeking

to pick and choose a number of datasets that are appropriate for a project, they can quickly and easily

discount datasets of little relevance to their task. All the datasets residing outside the area of study can

be identified in one fell swoop. All vector-based datasets can likewise be as easily identified, and kept

for their appropriateness.

W

The parsing of XML files was a significant hindrance in the development of the Metadata Parser. It

took weeks of research into the PHP language before a workable solution was found, and even then it

took months to create workable code. The end result is that despite a relatively polished Metadata

Parser and single-file parser, the multiple-file parser is lacking. The pictographs sported by the

multiple-file parser are high-resolution images reduced in size after the fact by the Internet Explorer

drawing engine, which uses a poor resampling technique. The end result is an esthetically displeasing

sight. With more development time oriented on the multiple-file parser, this project could have

commercial potential.

41

2.5.1 Code Portability

he Wapache framework enables code in languages designed for the web to run independently on

a personal computer as a full-fledged application. A positive repercussion such development is

that the code can easily be ported to a web server.

T
In the case of the Metadata Parser, a few changes would have to be implemented before the code

would be ready to run independently on a web server. For one, the whole design of the wizard would

have to be revamped. The code for the wizard was designed to fit in a window of a set resolution.

Having this same code displayed in a regular browser window completely changes this dynamic, and

the contents as-is would look completely distorted. Furthermore, all of the CSS code would have to be

altered to be cross-browser compatible. This is the code that determines how things look. In the case of

the Metadata Parser, it was geared for how Internet Explorer interprets CSS code, which is

substantially different from how other browsers such as Mozilla's Firefox and Apple's Safari interpret

cascading style sheets.

Part of the underlying PHP code would also have to change. As it stands, the parser simply reads the

metadata file that the user selected directly from the hard drive. The PHP Zend Engine is able to do this

because it has direct access to the hard drive. However, a web server does not have access to a surfer's

hard drive, and therefore would be unable to process the file. The code would have to be altered: first

have the user upload the file to the server, which would then have the ability to read it off of it's own

disk drive.

42

2.5.2 Development of Plug-Ins

he Metadata Parser supports two types of plug-ins: parsers, and additional images for the

pictograph libraries. For their installation, both of these can simply be placed in the appropriate

directories within the Metadata Parser, and they will automatically be integrated into the program

when it's run.

T

For the development of pictographs, a base image (blank.png) is provided in the /images/buttons/

directory. Additional documentation on the matter (about.txt) is also provided in the same folder. The

text explains the nuances in the directory structure, the types of images, etc.

Parser development is covered by a separate text file, in the parsers directory. The file containing the

documentation is also called about.txt, and it contains information on the naming conventions of the

parser, the structure of the file, the variables provided to it by the Metadata Parser, and it explains the

purpose of the called code files in the scripts directory, as well as how to interact with dynamic

JPEGs.

A third about.txt file is also located inside the root directory of the Metadata Parser, and serves to

explain the general directory structure of the program. Combined, this information provides a

developer with a small pool of documentation from which to begin work on the program.

Users ought to be cautious when running the code of other developers, in the form of plug-ins for the

Metadata Parser. These plug-ins have direct access to the hard drive, and ill-written or malicious code

could cause irreversible changes to the user's computer.

43

2.5.3 Future Development

he Metadata Parser is a relatively polished product, but it is one that is geared towards single-

file parsing. While there is nothing inherently wrong with single-file parsing, it is clear to this

author that the future of this kind of technology rests in multiple-file parsing. The multiple-file parser

included in the experimental release of the Metadata Parser is just that: an experiment, an exercise to

prove the usefulness of such visualization techniques. It's incorporation into the greater program

remains lackluster. For instance, the program is designed to allow the user to choose single metadata

files to pass on to the parser, not directories nor sets of files.

T

The next version of the Metadata Parser should incorporate these lessons, and create an environment

more suitable to multiple-file parsing. The correction of bugs would also be a necessity, as well as a

look at the current issues with regards to the limitations of displaying but one pictograph per item in the

metadata file. In terms of new additions, a feature whereby users could dynamically download new

parsers on-the-fly, from within the Metadata Parser itself, would be a desirable improvement to work

on. Finally, the ability to export the current visualizations into a PDF-compatible format would also be

a desirable addition.

44

SECTION 3
Conclusion

45

3.1: Conclusion

he Metadata Parser is able to interpret FGDC-compliant XML geospatial metadata and produce

a document representing the written data as a set of pictographs. The capability for the program

to interpret these metadata files is dependent upon the parsers developed for the application. Creating

new parsers could make the Metadata Parser visualize metadata files following different data standards,

or interpret the same standards in new ways. A framework, consisting of documentation as well as little

facilitators within the Metadata Parser, are provided to encourage this kind of development.

T

The Metadata Parser is susceptible to a few computer glitches, or bugs, but these are minor problems

overall. The program is limited by its inability to present more than one pictograph per content item in

the metadata, as well as its adherence to a single variant of the FGDC metadata standard. Further

development could correct these problems, and enhance the general functionality of the program.

3.2: Notes

1. The description of the Wapache framework is extracted from the official site for the project. The

link is provided in the reference below.

2. The inner workings of Wapache was determined through analysis of the software by this paper's

author. Tools such as Microsoft's Process Explorer were used for the purposes of the

investigation.

3. The statistics on monthly downloads of Wapache were provided by SourceForge.net, its web

host. The link is provided in the reference below.

4. The information on ResHack's author were taken from the application's README file.

5. Sessions, and other concepts of the PHP language are documented on the official Canadian

46

version of the PHP website. The link is provided in the reference below.

6. General information on GeoBase is documented on its own website. The link is provided in the

reference below.

3.3: References

Johnson, Angus. ResHacker. Vers. 3.4.0. Computer Software. 2002. Windows-Compatible, download.

Michener, William; Brunt, James; Helly, John; Kirchner, Thomas; Stafford, Susan. “Nongeospatial
Metadata for the Ecological Sciences.” Ecological Applications 7.1 (1997): 330-342.

“GeoBase – Home” GeoBase.ca. Natural Resources Canada. 27 March 2008.
<http://www.geobase.ca/geobase/en/index.html>

“PHP: Sessions” php.net. The PHP Group. 27 March 2008. <http://ca.php.net/session>

“Project Statistics for Wapache” SourceForge.net. SourceForge, Inc. 27 March 2008.
<http://sourceforge.net/project/stats/?group_id=129600&ugn=wapache>

“Wapache – Power of Apache to Go” SourceForge.net. SourceForge, Inc. 27 March 2008.
<http://wapache.sourceforge.net/>

Trademark symbols have been attributed where deemed appropriate. However, the lack or presence of
such a symbol should not be understood as a legal statement upon the status of the trademark(s) under
scrutiny.

47

APPENDIX I
Pictographs

48

The following are the pictographs designed for, and included with, the Metadata Parser.

BASIC DATA SETS

Digital Elevation Model Lakes, Rivers, Hydro Political Roads

Satellite Unknown

DATA TYPES

Raster Tabular Vector Unknown

49

PLACES: CITIES

Ottawa Toronto Uknown

PLACES: PROVINCES/STATES

Alberta British Columbia, B.C.,
Colombie-Britannique

California Florida

Manitoba New Brunswick,
Nouveau Brunswick

Newfoundland, Terre
Neuve

Northwest Territories,
Territoires du Nord-

Ouest

50

Nunavut Ontario Prince Edward
Island,Île-du-Prince-

Édouard

Quebec, Québec

Saskatchewan Texas Yukon Unknown

PLACES: COUNTRIES/CONTINENTS

Africa Australia Britain, England,
Scotland, United

Kingdom

Canada

51

China Finland France Germany

Japan (South) Korea Mexico Russia

South America United-States, USA Unknown

RESOLUTION

Low-Resolution Medium-Resolution High-Resolution Unknown

52

BASE PICTURES FOR DYNAMIC JPEGs

Datum Ellipsoid Timescale General Blank Template

53

APPENDIX II
Source Code

54

CREDITS .PHP
<HTML>
<HEAD>
<TITLE>Metadata Parser Wizard</TITLE>
<link rel="stylesheet" type="text/css" href="./css/steps.css" />
</HEAD>

<BODY>

<div id="container">
<div id="logo"></div>
<div id="contents">

This tool is used to process text-based geospatial metadata files and present
them in a manner more conducive to quick visual interpretation.

</div>
</div>

<ul class="nav_half">
CREDITS
BEGIN

</BODY>
</HTML><html>
<head>
<title>Metadata Parser Wizard</title>
<link rel="stylesheet" type="text/css" href="./css/steps.css" />
</head>

<body>

<div id="container">
<div id="logo"></div>

<div align="center" id="creditsbox">
<marquee scrollamount="2" direction="up" loop="true" width="380">
<center>

Developed By

Julien McArdle

Original Concept By

Dr. Mike Sawada, M.A., Ph.D.

The Metadata Parser runs on the Wapache application development environment. You
can find more information on Wapache at the official site:

55

http://wapache.sourceforge.net/

Work Based on Code By

Will Bontrager
 (CSS DIV Hide/Show)

Angela Bradley<
/a> (File Extention IDing)

Bill Pellowe
 (Random Generator)

Kevin Yank
 (XML Parsing)

Introductory Comic By

Julien McArdle

Stock Photography By

The members of SXC.HU.

Reproduced with
permission.

Non-System Fonts By

Ray Larabie

Hans J. Zinken

Used under license.

Globe Icon By

Bogdan Condurache

Free for public release.

Digital Elevation Model By

Australian Commonwealth Scientific and Research Organization

Graphics By

Julien McArdle

"Processing Complete" Voice By

AT&T Labs Text-To-
Speech

Sanctioned for limited non-commercial
use.

Sounds By

<a
href="http://www.partnersinrhyme.com/pirsounds/WEB_DESIGN_SOUNDS_WAV/INSTRUME.sh
tml">Partners in Rhyme

56

http://www.sitepoint.com/article/php-xml-parsing-rss-1-0
http://www.i-fubar.com/random-string-generator.php
http://php.about.com/od/finishedphp1/qt/file_ext_PHP.htm
http://www.willmaster.com/blog/css/show-hide-div-layer.php
http://wapache.sourceforge.net/
http://wapache.sourceforge.net/

Used under license.

<?php
/*
This script opens the parser files, and displays their authors in the credits.
*/

$cwd = getcwd();
$dir = "$cwd/parsers";

// Open a known directory, and proceed to read its contents
if (is_dir($dir)) {
if ($dh = opendir($dir)) {

while (($file = readdir($dh)) !== false) {
if ($file != "." && $file != ".." && $file != "Thumbs.db" && $file !

= "about.txt" && $file != "auto.php") {
$nakedfile = substr($file, 0, strrpos($file, '.'));
echo "<span style=\"text-transform:

uppercase\">\"$nakedfile\" Parser By
\n";
$readline = file('./parsers/'.$file);
if ($readline[6] == "") {

echo "Unidentified";
} else {
echo $readline[6];

}
echo "

\n";
}

}
closedir($dh);

}
}
?>

Special Thanks

Dr. Sawada, as well as the development crews behind
Inkscape,
Notepad++, and
GIMP.

Any original materials found within this application
created by Julien McArdle are released free for
non-commercial use in accordance with the terms
dictated by the University of Ottawa.

Additional inquiries can be made at the

following e-mail address:

julien@jmcardle.com

</center>
</marquee>
</div>
</div>

<ul class="nav_full">

57

GO BACK

</body>
</html>

INDEX .PHP
<HTML>
<HEAD>
<TITLE>Metadata Parser Wizard</TITLE>
<link rel="stylesheet" type="text/css" href="./css/steps.css" />
</HEAD>

<BODY>

<div id="container">
<div id="logo"></div>
<div id="contents">

This tool is used to process text-based geospatial metadata files and present
them in a manner more conducive to quick visual interpretation.

</div>
</div>

<ul class="nav_half">
CREDITS
BEGIN

</BODY>
</HTML>

REPORT .PHP
<?php
session_start();
?>

<html>
<head>

<title>Metadata Parser Report</title>
<link rel="stylesheet" type="text/css" href="./css/report.css" />
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" >

<script type="text/javascript" language="JavaScript">
function HideShow(d) {
if(document.getElementById(d).style.display == "none")

58

{ document.getElementById(d).style.display = "block"; }
else { document.getElementById(d).style.display = "none"; }
}

function HideDiv(d) {
document.getElementById(d).style.display = "none";
}

function ShowDiv(d) {
document.getElementById(d).style.display = "block";
}
</script>

<? include("./scripts/idgen.php"); ?>

</head>

<body onResize="DetectSize();">
<bgsound src="./media/complete.wav">

<script type="text/javascript" language="JavaScript">
function DetectSize() {

if (document.body.clientWidth < 530) {
HideDiv('parserdiv');
ShowDiv('widtherrorbox');
} else if (document.body.clientWidth > 530) {
ShowDiv('parserdiv');
HideDiv('widtherrorbox');
}

}
</script>

<div id="widtherrorbox" class="widtherrorboxclass">
<div class=errorbox><div class=errortitle>ERROR:</div>
<div class=errorcontent><img src="./images/error.gif" style="float:left;margin-
right:10px;">
The width of this window is too small to properly display the content.
Please increase the width of this window.
</div></div>
</div>

<div id="parserdiv">

<div class="reportheader">
<? include("reportbg.php") ?>
<div class="reportheadertext" >

VISUALIZATION REPORT

<div class="reportheadersubtext">
<?php
session_register("metadatafile");
$metadatafiledisp = str_replace("\\\\", "\\", $metadatafile);
$wholefilename = strtolower($metadatafiledisp) ;
$filename = split("[\]", $wholefilename) ;

59

$n = count($filename)-1;
$filename = $filename[$n];
echo $filename;
?>
</div>
</div>

</div>

<div style="text-align: center;">

<?php
session_register("metadatatype");
if ($metadatatype == "Automatic") {

include("./parsers/auto.php");
} elseif (file_exists("./parsers/$metadatatype.php")) {

include("./parsers/$metadatatype.php");
} elseif (file_exists("./parsers/$metadatatype.PHP")) {

include("./parsers/$metadatatype.PHP");
} else {
echo "<div class=errormegabox><div class=errorbox><div class=errortitle>ERROR:</
div>";
echo "<div class=errorcontent><img src=\"./images/error.gif\"
style=\"float:left;margin-right:10px;\">";
echo "Could not load the parser. Try going through the Wizard again. If that
fails, the parser might not be properly formatted.";
echo "</div></div></div>";
}
?>

</div>
</div>

</body>
</html>

REPORTBG .PHP
<div class="reportbg_left"></div>
<div class="reportbg_right"></div>
<div class="reportbg_top"></div>
<div class="reportbg_bottom"></div>
<div class="reportbg_topleft"></div>
<div class="reportbg_topright"></div>
<div class="reportbg_bottomleft"></div>
<div class="reportbg_bottomright"></div>

STEP1 . PHP
<?php
session_start();
?>

<HTML>

60

<HEAD>
<TITLE>Metadata Parser Wizard</TITLE>
<link rel="stylesheet" type="text/css" href="./css/steps.css" />
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" >
</HEAD>

<BODY>

<?php
session_register("metadatafile");
$metadatafile = "";
?>

<div id="container">
<div id="logo"></div>
<div id="contents">

This utility only interprets XML-based metadata files (those that
end with .xml.) Please select the metadata file you wish
to convert, and press NEXT.

<div id="selmetabox">
<form name="step1form" action="step2.php" method="POST">

<div id="steps">Please Select a Metadata File...</div>
<div id="stepscontents">

<input name="metadatafile" type="file" size="35" />
</div>

</form>
</div>

</div>
</div>

<ul class="nav_half">
PREVIOUS
NEXT

</BODY>
</HTML>

61

STEP1ERROR1 .PHP
<HTML>
<HEAD>
<TITLE>Metadata Parser Wizard</TITLE>
<link rel="stylesheet" type="text/css" href="./css/steps.css" />
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" >
</HEAD>

<BODY>
<bgsound src="./media/error.wav">

<div id="container">
<div id="logo"></div>
<div id="contents">

This utility only interprets XML-based metadata files (those that
end with .xml.) Please select the metadata file you wish
to convert, and press NEXT.
You did not select a metadata file.
 Please select one using the "Browse..." button below before continuing.

<div id="selmetabox2">
<form name="step1form" action="step2.php" method="POST">

<div id="steps">Please Select a Metadata File...</div>
<div id="stepscontents">

<input name="metadatafile" type="file" size="35" />
</div>

</form>
</div>

</div>
</div>

<ul class="nav_half">
PREVIOUS
NEXT

</BODY>
</HTML>

62

STEP1ERROR2 .PHP
<HTML>
<HEAD>
<TITLE>Metadata Parser Wizard</TITLE>
<link rel="stylesheet" type="text/css" href="./css/steps.css" />
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" >
</HEAD>

<BODY>
<bgsound src="./media/error.wav">

<div id="container">
<div id="logo"></div>
<div id="contents">

This utility only interprets XML-based metadata files (those that
end with .xml.) Please select the metadata file you wish
to convert, and press NEXT.
You selected a metadata file, but it wasn't
in XML. Please select another file using the "Browse..." button below
before continuing.

<div id="selmetabox2">
<form name="step1form" action="step2.php" method="POST">

<div id="steps">Please Select a Metadata File...</div>
<div id="stepscontents">

<input name="metadatafile" type="file" size="35" />
</div>

</form>
</div>

</div>
</div>

<ul class="nav_half">
PREVIOUS
NEXT

</BODY>
</HTML>

63

STEP2 . PHP
<?php
session_start();
?>

<html>
<head>

<title>Metadata Parser Wizard</title>
<link rel="stylesheet" type="text/css" href="./css/steps.css" />
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" >

<script type="text/javascript" language="JavaScript">
function ErrorScreen1() {
window.location = 'step1error1.php'
}
function ErrorScreen2() {
window.location = 'step1error2.php'
}

</script>

</head>

<?php

/*
This is the error-checking code. For the first error, it checks to see whether a
metadata file was selected at all. If none was, it'll send the user to a
modified first step page, which contains details on the error.

For the second error, it checks to see whether it was an XML file that was
selected. Likewise to the first error, if this test fails, the user will be sent
to a specially modified first step page. Previously, if the user had had an
error, but then corrected the situation, went onwards to the following pages
... but then went back for some reason, then the error page would still show.
Additional code was added to correct that situation. If the user fucks up,
corrects himself, and goes back for whatever reason step-wise, then the correct
non-error page will be displayed.

All basic variables are stored in the session. This is how they are remembered
from page to page.
*/

session_register("metadatafile");
if ($_POST["metadatafile"] == "") {

if ($metadatafile == "") {
echo "<body onLoad=\"ErrorScreen1();\">\n";
}

if ($metadatafile != "") {
$filename = strtolower($metadatafile) ;
$exts = split("[/\\.]", $filename) ;
$n = count($exts)-1;
$exts = $exts[$n];
if ($exts == "xml") {

echo "<body>\n";
} else {

echo "<body onLoad=\"ErrorScreen2();\">\n";

64

}
}

} else {
$metadatafile = $_POST["metadatafile"];
$filename = strtolower($metadatafile) ;
$exts = split("[/\\.]", $filename) ;
$n = count($exts)-1;
$exts = $exts[$n];
if ($exts == "xml") {

echo "<body>\n";
} else {

echo "<body onLoad=\"ErrorScreen2();\">\n";
}

}
?>

<div id="container">
<div id="logo"></div>
<div id="contents">

For this second step, please choose the standard of the Metadata file. If
you don't know or are otherwise unsure, you can choose "Automatic" to have the
Wizard try to guess the appropriate format for you.

<div id="selmetabox">

<form action="step3.php" name="step2form" method="POST">
<div id="steps">Please Select the Metadata

Type...</div>

<?php
/*

This script counts the amount of files in the parser directory. If there are
only two parsers or less, then we don't want the unsightly scroll bar to show.
If there are more than two parsers, then we need the scroll bar to show.

This script is part of the greater drag 'n drop parser idea. While the next
script down assists with listing the parsers, this script assists with the
display of the grey box that encompasses them.

*/
$cwd = getcwd();
$dir = "$cwd/parsers/";

/* To make up for glitches in the count() function */
if (count(glob($dir . "*.php")) == "1") {

$count_lowercase = "0";
} else {

$count_lowercase = count(glob($dir . "*.php"));
}

if (count(glob($dir . "*.PHP")) == "1") {
$count_uppercase = "0";

65

} else {
$count_uppercase = count(glob($dir . "*.php"));

}

$countparsers = $count_lowercase + $count_uppercase;

if ($countparsers >= 4) {
echo "<div id=\"stepscontents2overflow\">\n";
} else {
echo "<div id=\"stepscontents2\">\n";
}
?>

<INPUT TYPE="RADIO" NAME="metadatatype" VALUE="Automatic"
CHECKED>Automatic

<?php
/*

This is the script that makes adding new parsers via 'drag and drop' possible.
Essentially, it looks in the parsers folder for all files. It lists all files
here, except for the special automatic parser file. It then reads a specific
line of the parser file (line #4) to get the HTML code to insert here as the
description.

The filename of the parser becomes the value of the type of parser used behind
the scenes by the application. The parser description line inside the parser is
what is used to be publicly displayed as the English-readable

title.
*/

$cwd = getcwd();
$dir = "$cwd/parsers";

// Open a known directory, and proceed to read its contents
if (is_dir($dir)) {

 if ($dh = opendir($dir)) {
 while (($file = readdir($dh)) !== false) {

if ($file != "." && $file != ".." && $file !=
"Thumbs.db" && $file != "about.txt" && $file != "auto.php") {

$nakedfile = substr($file, 0, strrpos($file, '.'));
echo "<INPUT TYPE=\"RADIO\" NAME=\"metadatatype\"

VALUE=\"$nakedfile\">";
$readline = file('./parsers/'.$file);
echo $readline[3];
echo "
\n";
}

 }
 closedir($dh);
 }

}
?>

</div>
</form>

66

</div>

</div>
</div>

<ul class="nav_half">
PREVIOUS
NEXT

</body>
</html>

STEP3 . PHP
<?php
session_start();
?>

<html>
<head>
<title>Metadata Parser Wizard</title>
<link rel="stylesheet" type="text/css" href="./css/steps.css" />
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" >
</head>
<body>

<div id="container">
<div id="logo"></div>
<div id="contents">

Finally, check the details below to make sure that the details are
correct. If they are, press <span

class="technicaltext">FINISH
and the Metadata Parser will process the file. Otherwise, use the
PREVIOUS buttons to revise your
choices.

<div class="confirmdetailsbox">
<div class="confirmdetailstitle">

<img src="./images/tinyglobe.jpg"
class="tinyglobe"> Confirm Metadata Selection

</div>

<div class="mdfileform" nowrap="true">
Metadata Parser Wizard

© 2007-2008 Julien McArdle

File:
<?php
session_register("metadatafile");

67

$metadatafiledisp = str_replace("\\\\", "\\", $metadatafile);
echo $metadatafiledisp;
?>

Type:
<?php
session_register("metadatatype");
$metadatatype = $_POST["metadatatype"];
print $metadatatype;
?>
</div>

</div>
</div>

</div>

<ul class="nav_half">
PREVIOUS
FINISH

</body>
</html>

CSS/STEPS . PHP
body {

background-color:#fff;
font:100.01%/1.4 sans-serif;
cursor: default;

}

#container {
position: absolute;
background-color:#fff;
top: 0px;
left: 0px;
width: 600px;
border: 0px solid #000;
text-align:left;

}

#logo {
position: absolute;
top: 0px;
height: 80px;
color: fff;
background-color: #000050;
background-image: url("../images/logo.png");
width: 600px;
margin: 0px auto;
border: 0px;

}

68

#contents {
position: absolute;
top: 80px;
padding: 20px 10px 10px 50px;

}

#selmetabox {
position: absolute;
left: 100px;
top: 100px;
width: 400px;
background-color: #f5f5f5;
border: 1px solid #000;

}

#selmetabox2 {
position: absolute;
left: 100px;
top: 130px;
width: 400px;
background-color: #f5f5f5;
border: 1px solid #000;

}

#steps {
color: #fff;
font: 150.01%/1.4 sans-serif;
background-color: #000;
width: 100%;
padding: 10px 0px 4px 0px;
text-align: center;

}

#stepscontents {
padding: 20px 0 0 0;
text-align: center;

}

#stepscontents2 {
padding: 20px 0 0 25px;
text-align: left;
height: 70px;

}

#stepscontents2overflow {
padding: 20px 0 0 25px;
overflow-y: scroll;
text-align: left;
height: 70px;

}

#bottomcredits {
position: absolute;
bottom: 0px;

69

left: 0px;
width: 604px;
font: 7pt/1.4 sans-serif;
background-color: #eee;
text-align: right;

}

#creditsbox {
position: relative;
top: 120px;

}

ul.nav_half{
list-style:none;
background:#222330;
width: 602px;
position: absolute;
bottom: 0px;
left: -40px;

}

.nav_half li{
border-right:2px solid #DDD;
text-align: center;
float:left;
display:block;
width:50%;

}

.nav_half li a{
font-size:11px;
outline:none;
color:#fff;
text-decoration:none;
display:block;
padding:5px 0 5px 5px;
width:100%;

}

.nav_half li a:hover{
background:#524d6e;
color:#fff!important;
width:100%;

}

ul.nav_full{
list-style:none;
background:#222330;
width: 610px;
position: absolute;
left: -50px;
bottom: 0px;

}

.nav_full li{

70

text-align: center;
float:left;
display:block;
width:100%;

}

.nav_full li a{
font-size:11px;
outline:none;
color:#fff;
text-decoration:none;
display:block;
padding:5px 0 5px 5px;
width:100%;

}

.nav_full li a:hover{
background:#524d6e;
color:#fff!important;
width:100%;

}

img.credits_bg {
position: absolute;
top: 80px;
right: 0px;

}

img.steps_img {
position: absolute;
right: 0px;
bottom: 0px;

}

.technicaltext {
font-weight: bold;
font-family: "Courier New" Courier monospace;
font-size: 100%;
color: #524d6e;

}

.mdfileform {
height:110px;
width:480px;
overflow-x: scroll;
display:block;
border: 1px solid #888;
font-family: "Courier New" Courier monospace;
font-size: 80%;

}

.confirmdetailsbox {
border: 1px solid #000;
width: 482px;
background-color: #fff;

71

background-image: url("../images/confirm_bg.jpg");
}

.confirmdetailstitle {
width: 100%;
color: #fff;
padding: 0 0 4px 0;
text-align: center;
font: 100.01%/1.4 sans-serif;
font-weight: bold;
background-color: #524d6e;

}

IMG.tinyglobe {
position: relative;
top: 5px;
left: 5px;

}

CSS/REPORT .PHP
body {

background-color:#fff;
font:100.01%/1.4 sans-serif;
cursor: default;

}

.widtherrorboxclass {
text-align: center;
display: none;
position: relative;
top: 40%;

}

.reportheader {
background-color:#524d6e;
width: 95%;
height: 90px;
position: relative;
left: 15px;
z-index: 1;

}

.reportheadertext {
font:200.01%/1.4 sans-serif;
font-weight: bold;
text-align:left;
position: absolute;
left: 16px;
top: 16px;
color: #fff;
z-index: 5;

}

72

.reportheadersubtext {
font:100.01%/1.4 sans-serif;
font-weight: bold;
font-size: 12px;
color: #fff;
z-index: 5;

}

.reportbg_left {
background-image: url("../images/reportbg_left.gif");
background-repeat: repeat-y;
width: 32px;
height: 100%;
position: absolute;
left: 0px;
z-index: 2;

}

.reportbg_right {
background-image: url("../images/reportbg_right.gif");
background-repeat: repeat-y;
width: 32px;
height: 100%;
position: absolute;
right: -1px;
z-index: 2;

}

.reportbg_top {
background-image: url("../images/reportbg_top.gif");
background-repeat: repeat-x;
width: 100%;
height: 32px;
position: absolute;
top: 0px;
z-index: 3;

}

.reportbg_bottom {
background-image: url("../images/reportbg_bottom.gif");
background-repeat: repeat-x;
width: 100%;
height: 32px;
position: absolute;
bottom: 0px;
z-index: 3;

}

.reportbg_bottomleft {
background-image: url("../images/reportbg_bottomleft.gif");
background-repeat: no-repeat;
width: 32px;
height: 32px;
position: absolute;
bottom: 0px;
left: 0px;

73

z-index: 4;
}

.reportbg_bottomright {
background-image: url("../images/reportbg_bottomright.gif");
background-repeat: no-repeat;
width: 32px;
height: 32px;
position: absolute;
bottom: 0px;
right: -1px;
z-index: 4;

}

.reportbg_topleft {
background-image: url("../images/reportbg_topleft.gif");
background-repeat: no-repeat;
width: 32px;
height: 32px;
position: absolute;
top: 0px;
left: 0px;
z-index: 4;

}

.reportbg_topright {
background-image: url("../images/reportbg_topright.gif");
background-repeat: no-repeat;
width: 32px;
height: 32px;
position: absolute;
top: 0px;
right: -1px;
z-index: 4;

}

.errorbox {
width: 400px;
border: 1px solid #000;
text-align: left;

}

.errortitle {
background-image: url("../images/redtitlebg.jpg");
background-repeat: repeat-x;
width: 100%;
background-color: #9f0000;
text-align: center;
color: #fff;
font-weight: bold;

}

.errorcontent {
padding: 10 10 10 10px;

}

74

img.reportglobe {
float: left;
margin-right: 10px;

}

.metablock {
border: 1px solid #000;
margin-top: 20px;
position: relative;
width: 90%;

}

.metatitle {
font-weight: bold;
color: #fff;
width: 100%;
text-align: center;
background-color: #252525;
background-image: url("../images/blacktitlebg.jpg");
background-repeat: repeat-x;

}

.contacttitle {
font-weight: bold;
color: #fff;
width: 100%;
text-align: center;
background-color: #262648;
background-image: url("../images/bluetitlebg.jpg");
background-repeat: repeat-x;

}

img.expand {
position: absolute;
left: 5px;
top: 5px;
border: 0px;

}

.metacontent {
background-color: #2f2f2f;
border-top: 1px solid #eee;
text-align: center;
padding: 30px 30px 30px 30px;

}

.smallbuttonsbox {
position: absolute;
background-image: url("../images/smallbuttonsbg.gif");
top: 5px;
right: 20px;
width: 152px;
height: 44px;
text-align: center;
padding-top: 5px;

75

padding-left: 7px;
}

.listitem_white {
position: relative;
width: 100%;
height: 40px;
background-color: #fff;
border-bottom: 2px #ccc;
padding: 5px 5px 5px 5px;

}

.listitem_grey {
position: relative;
width: 100%;
height: 40px;
background-color: #f0f0f0;
border-bottom: 2px #ccc;
padding: 5px 5px 5px 5px;

}

.descriptioncontent {
background-color: #f0f0f0;
border-top: 1px solid #eee;
text-align: left;
padding: 10px 10px 10px 10px;

}

img.button {
margin: 15px 15px 15px 15px;

}

img.buttonsmall {
margin-right: 5px;
height: 35px;
width: 35px;

}

.contacttextbg {
background-image:url("../images/leftbar.png");
background-repeat: repeat-y;
position:relative;
background-color: #ffffff;
text-align: left;
padding: 10px 10px 10px 50px;
margin-top: 15px;
margin-bottom: 15px;

}

.errormegabox {
position:relative;
top:30%;
text-align:center;

}

img.contacticons {

76

position: absolute;
left: -50px;
top: 0px;

}

IMAGES/BUTTONS/DATUM/DATUM.DJPG
<?php
header("Content-type: image/jpeg");

/* Get values as a string from the url... */
$datum = $_GET['datum'];

/* Set basic parameters */
$image = ImageCreateFromPNG("./blank.png");
$font = '../huskysta.ttf';
$textcolor = imagecolorallocate($image, 0, 0, 0);

/*
The first line of text. First, it sets the font to a default
of 36 points height. Then it sees whether the resulting text is too
wide for our image of 200x200 pixels. If it is, it decreases the font
size and keeps doing so until it all fits on one line. It then uses
that same size function to determine how to center the text. Finally,
it displays the text.
*/

$fontsize = 36;
$size = imagettfbbox($fontsize, 0, $font, $datum);
while ($size[2] > 180) {

$fontsize--;
$size = imagettfbbox($fontsize, 0, $font, $datum);

}

/*
This is what centers the font. It finds the size that will be consumed
by the fontbox, takes half that size, and substracts it from the midpoint of
the whitespace in the blank button. The end result is where the left-hand side
of the textbox should be with respect to blank image in order to have the text
centered.
*/

$sizedatum = (95 - (($size[2]) / 2));
imagefttext($image, $fontsize, 0, $sizedatum, 100, $textcolor, $font, $datum);

/* Displaying the image */
ImageJPEG($image);
ImageDestroy($image);
?>

77

IMAGES/BUTTONS/ELL IPSOID/ELL IPSOID .DJPG
<?php
header("Content-type: image/jpeg");

/* Get values as a string from the url... */
$ellipsoid = $_GET['ellips'];

/*
This turns long strings into abbreviations. So "Geodetic Reference System"
becomes "GRS."
*/
$ellipsoid = str_replace("Geodetic Reference System", "GRS", $ellipsoid);
$ellipsoid = str_replace("Système de référence géodésique de", "SRG",
$ellipsoid);

/* Set basic parameters */
$image = ImageCreateFromPNG("./blank.png");
$font = '../huskysta.ttf';
$textcolor = imagecolorallocate($image, 0, 0, 0);

/*
The first line of text. First, it sets the font to a default
of 36 points height. Then it sees whether the resulting text is too
wide for our image of 200x200 pixels. If it is, it decreases the font
size and keeps doing so until it all fits on one line. It then uses
that same size function to determine how to center the text. Finally,
it displays the text.
*/

$fontsize = 36;
$size = imagettfbbox($fontsize, 0, $font, $ellipsoid);
while ($size[2] > 180) {

$fontsize--;
$size = imagettfbbox($fontsize, 0, $font, $ellipsoid);

}

/*
This is what centers the font. It finds the size that will be consumed
by the fontbox, takes half that size, and substracts it from the midpoint of
the whitespace in the blank button. The end result is where the left-hand side
of the textbox should be with respect to blank image in order to have the text
centered.
*/

$sizeellipsoid = (95 - (($size[2]) / 2));
imagefttext($image, $fontsize, 0, $sizeellipsoid, 100, $textcolor, $font,
$ellipsoid);

/* Displaying the image */
ImageJPEG($image);
ImageDestroy($image);
?>

78

IMAGES/BUTTONS/RESOLUTION/RESOLUTION .DJPG
<?php
header("Content-type: image/jpeg");

/* Get values as a string from the url... */
$resunits = $_GET['units'];
$restype = $_GET['type'];

/*
This is the script that tries to match the resolution
to a picture representing high, medium, or low resolution.
Of course, resolution is a very relative notion, so this
isn't a very reliable means of expressing resolution.

First the script looks at the unit type (ie. decimal
degrees, meters, etc.) It then assigns a hi/med/low
resolution image based on the amount of units for that
unit type.
*/
if (preg_match("/decimal/i", $restype) || preg_match("/décimaux/i", $restype)) {

if ($restype < 0.01) {
$image = ImageCreateFromJPEG("./hires.jpg");
} elseif ($restype < 1) {
$image = ImageCreateFromJPEG("./medres.jpg");
} else {
$image = ImageCreateFromJPEG("./lowres.jpg");
}

} elseif (preg_match("/kilom/i", $restype)) {
if ($restype < 1) {
$image = ImageCreateFromJPEG("./hires.jpg");
} elseif ($restype < 10) {
$image = ImageCreateFromJPEG("./medres.jpg");
} else {
$image = ImageCreateFromJPEG("./lowres.jpg");
}

} elseif (preg_match("/meter/i", $restype) || preg_match("/mètre/i", $restype))
{

if ($restype < 10) {
$image = ImageCreateFromJPEG("./hires.jpg");
} elseif ($restype < 200) {
$image = ImageCreateFromJPEG("./medres.jpg");
} else {
$image = ImageCreateFromJPEG("./lowres.jpg");
}

} else {
$image = ImageCreateFromJPEG("./unknown.jpg");
}

/* Displaying the image */
ImageJPEG($image);
ImageDestroy($image);
?>

79

IMAGES/BUTTONS/TIME/TIME .DJPG
<?php
header("Content-type: image/jpeg");

/* Get values as a string from the url... */
$begdate = $_GET['begdate'];
$separator = "-";
$enddate = $_GET['enddate'];

/* Set basic parameters */
$image = ImageCreateFromJPEG("./blank.jpg");
$font = '../huskysta.ttf';
$textcolor = imagecolorallocate($image, 0, 0, 0);

/*
The first line of text. First, it sets the font to a default
of 36 points height. Then it sees whether the resulting text is too
wide for our image of 200x200 pixels. If it is, it decreases the font
size and keeps doing so until it all fits on one line. It then uses
that same size function to determine how to center the text. Finally,
it displays the text.
*/

$fontsize = 36;
$size = imagettfbbox($fontsize, 0, $font, $begdate);
while ($size[2] > 180) {

$fontsize--;
$size = imagettfbbox($fontsize, 0, $font, $begdate);

}

/*
$sizebeg is what centers the font. It finds the size that will be consumed
by the fontbox, takes half that size, and substracts it from the midpoint of
the whitespace in the blank button. The end result is where the left-hand side
of the textbox should be with respect to blank image in order to have the text
centered.
*/

$sizebeg = (95 - (($size[2]) / 2));
imagefttext($image, $fontsize, 0, $sizebeg, 75, $textcolor, $font, $begdate);

/* Second line of text. Note that the fontsize is purposefully reset. */

$fontsize = 36;
$size = imagettfbbox($fontsize, 0, $font, $separator);
$sizesep = (95 - (($size[2]) / 2));
imagefttext($image, $fontsize, 0, $sizesep, 105, $textcolor, $font, $separator);

/* Third and final line of text. */
$fontsize = 36;
$size = imagettfbbox($fontsize, 0, $font, $enddate);
while ($size[2] > 180) {

$fontsize--;
$size = imagettfbbox($fontsize, 0, $font, $enddate);

}

80

$size = imagettfbbox($fontsize, 0, $font, $enddate);
$sizeend = (95 - (($size[2]) / 2));
imagefttext($image, $fontsize, 0, $sizeend, 135, $textcolor, $font, $enddate);

/* Displaying the image */
ImageJPEG($image);
ImageDestroy($image);
?>

PARSERS/AUTO .PHP
<?php
/*
Parser official title: (always on line 4, HTML formatted)
Automatic

Author: (always on line 7, HTML tags supported)
Julien McArdle
*/

include("./parsers/fgdc.php");
?>

PARSERS/FGDC .PHP
<?php
/*
Parser official title: (always on line 4, HTML formatted)
FGDC (Optimized for GeoBase)

Author: (always on line 7, HTML tags supported)
Julien McArdle

Information you should know:
This parser was optimized to interpret FGDC formatted metadata files from
GeoBase. The selected tags here that are extracted reflect the tags being used
by GeoBase. Likewise, the way some tags are interpreted reflect their usage from
GeoBase. Take $this->horizdn for instance, which is the tag that contains the
Datum. Here we extract the first word in that tag, as GeoBase uses abbreviations
followed by a potentially long string... ie. "NAD83 Blah Blah Blah"
becomes "NAD83." However, if another producer of metadata uses that tag in a
different manner, some info might be prematurely cut off by the fact that we do
only take the first word.
*/

include("./scripts/findbutton.php");
?>

<?php

/*
This is the XML parser. Not really the most elegant thing, but it is fully
functional. It extracts the appropriate tags ie. cntaddress) out of the main

81

root tags (ie. IDINFO.) If need be, it'll do a bit of processing to the text to
make it more suitable for parsing (ie. trim white space with the trim()
function.) What happens then is dependent upon the nature of the button.
"Buttons" are what I call the 200x200 pixel images that make up the visual
component of the resulting report.

In some cases, the script will call the findbutton function and try to find a
matching image to the string of text within the XML tag. In other cases, it will
call a dynamic JPEG (.djpg) file and do per-image processing. For instance, the
date range button works this way. The code for the processing of those images is
contained within the .djpg files themelves.

As for the need of the $divIDs: unique IDs are assigned to the DIVs that make up
the end report. This is what enables specific DIVs from being closed/open with
the expand/collapse buttons. We have to generate random DIVs because we cannot
assign static values, in case the root tag repeats itself and generates two
boxes in the same category. We also cannot rely on using values within the page,
in case of repetition again. The likelihood of collision here is 36^8 divided by
the number of unique elements present. If there were collisions, then the
collapse/expand function would close/expand an extra item it wasn't intended
to.

Format of variables being pulled by the underlying XML parser PHP class:
 $this->tag

...Where "tag" is the XML tag we want from within the greater root tag.

The code for this parser is originally based on an RSS parsing script from
SitePoint. You can check out the original work here:
http://www.sitepoint.com/article/php-xml-parsing-rss-1-0
*/

$metadata = $metadatafile;

class XMLParser {

var $insideitem = false;

function startElement($parser, $tagName, $attrs) {
if ($this->insideitem) {

$this->tag = $tagName;
} elseif ($tagName == "IDINFO") {

$this->insideitem = true;
} elseif ($tagName == "SPREF") {

$this->insideitem = true;
} elseif ($tagName == "METAINFO") {

$this->insideitem = true;
}

}

function endElement($parser, $tagName) {
if ($tagName == "IDINFO") {

$divID = idgen(8);
$divID2 = idgen(8);
$divID3 = idgen(8);
echo "<div class=\"metablock\">\n";
echo "<div class=\"metatitle\">\n";

82

echo "
\n";

echo "<div id=\"$divID2\"><img src=\"./images/collapse.png\"
class=\"expand\"></div>\n";

echo "<div id=\"$divID3\" style=\"display: none\"><img src=\"./
images/expand.png\" class=\"expand\"></div>\n";

echo "\n";
$title = trim($this->title);
echo "$title, $this->sername</div>\n\n";
echo "<div id=\"$divID\" class=\"metacontent\">\n";

$titledataout = findbutton("data", $this->title);
if ($titledataout == "nothing found") {

$seriesdataout = findbutton("data", $this->sername);
if ($seriesdataout == "nothing found") {

echo "<img
src=\"./images/buttons/data/unknown.jpg\" class=\"button\">\n";

} else {
echo "$seriesdataout \n";
}

} else {
echo "titledataout \n";

}

$geoformout = findbutton(geoform, $this->geoform);
if ($geoformout == "nothing found") {

echo "<img src=\"./images/buttons/geoform/unknown.jpg\"
class=\"button\">\n";

} else {
echo "$geoformout
\n";

}

$localplaceout = findbutton("place/local", $this->placekey);
if ($localplaceout == "nothing found") {

$provincialplaceout = findbutton("place/provincial",
$this->placekey);

if ($provincialplaceout == "nothing found") {
$nationalplaceout = findbutton("place/national",

$this->placekey);
if ($nationalplaceout == "nothing found") {

echo "<img
src=\"./images/buttons/place/unknown.jpg\" class=\"button\">\n";

} else {
echo "$nationalplaceout \n";
}

} else {
echo "$provincialplaceout \n";
}

} else {
echo "$localplaceout \n";
}

$begdate = trim($this->begdate);

83

$enddate = trim($this->enddate);
echo "<img src=\"./images/buttons/time/time.djpg?begdate=

$begdate&enddate=$enddate\" class=\"button\">
\n";

echo "</div></div>\n\n";
$this->title = $this->sername = $this->geoform = $this-

>placekey = "";
$this->begdate = $this->enddate = $this->cntper = "";
$this->cntorg = $this->address = $this->city = $this->state =

"";
$this->country = $this->cntvoice = $this->cntemail = "";
$this->insideitem = false;

} elseif ($tagName == "SPREF") {
$divID = idgen(8);
$divID2 = idgen(8);
$divID3 = idgen(8);
echo "<div class=\"metablock\">\n";
echo "<div class=\"metatitle\">\n";
echo "
";

echo "<div id=\"$divID2\"><img src=\"./images/collapse.png\"
class=\"expand\"></div>\n";

echo "<div id=\"$divID3\" style=\"display: none\"><img src=\"./
images/expand.png\" class=\"expand\"></div>\n";

echo "\n";
echo "Additional Technical Details</div>\n";
echo "<div id=\"$divID\" class=\"metacontent\">";

$latres = trim($this->latres);
echo "<img src=\"./images/buttons/resolution/resolution.djpg?

units=$latres&type=$this->geogunit\" alt=\"Resolution\" class=\"button\">\n";

/* This miniscript (short_horizdn) takes the typically very
long $this->horizdn string, and takes only

the first word. So "NAD83 blah blah blah" becomes "NAD83." This
could cause problems in the future

if you use compatible metadata files of a different standards
variant. */

$pos = array_keys(str_word_count($this->horizdn, 2));
$short_horizdn = substr($this->horizdn, 0, $pos[1]);
echo "<img src=\"./images/buttons/datum/datum.djpg?datum=

$short_horizdn\" class=\"button\">\n";
echo "<img src=\"./images/buttons/ellipsoid/ellipsoid.djpg?

ellips=$this->ellips\" class=\"button\">\n";

echo "</div></div>\n\n";
$this->latres = $this->longres = $this->geogunit = $this-

>horizdn = $this->ellips = "";
$this->insideitem = false;

} elseif ($tagName == "METAINFO") {
$divID = idgen(8);
$divID2 = idgen(8);
$divID3 = idgen(8);

84

echo "<div class=\"metablock\">\n";
echo "<div class=\"contacttitle\">\n";

echo "
\n";

echo "<div id=\"$divID2\"><img
src=\"./images/collapse.png\" class=\"expand\"></div>\n";

echo "<div id=\"$divID3\" style=\"display: none\"><img
src=\"./images/expand.png\" class=\"expand\"></div>\n";

echo " $this->cntorg</div>\n";
echo "<div id=\"$divID\" class=\"metacontent\">\n";
echo "<div class=\"contacttextbg\">";

echo "<img src=\"./images/contactaddress.png\"
class=\"contacticons\" style=\"margin-top:22px;\">";

echo "$this->cntper
\n";
echo "$this->address
\n";
$city = trim($this->city);
$state = trim($this->state);
$country = trim($this->country);
echo "$city, $state, $country";
echo "<img src=\"./images/whitebg_topright.png\"

style=\"position:absolute;top:0px;right:29px;\">";
echo "</div>\n";
echo "<div class=\"contacttextbg\"><img

src=\"./images/contacttelephone.png\" class=\"contacticons\">$this-
>cntvoice</div>\n";

echo "<div class=\"contacttextbg\"><img
src=\"./images/contactemail.png\" class=\"contacticons\" style=\"margin-top:
3px;\">$this->cntemail </div>\n";

echo "</div></div>\n\n";
$this->cntorg = $this->address = $this->city = $this->state =

"";
$this->cntper = $this->country = $this->cntvoice = $this-

>cntemail = "";
$this->insideitem = false;

}

}

function characterData($parser, $data) {
if ($this->insideitem) {

switch ($this->tag) {
case "SERNAME":
$this->sername .= $data;
break;
case "GEOFORM":
$this->geoform .= $data;
break;
case "SRCSCALE":
$this->srcscale .= $data;
break;
case "ONLINK":
$this->onlink .= $data;
break;
case "LATRES":
$this->latres .= $data;

85

break;
case "LONGRES":
$this->longres .= $data;
break;
case "GEOGUNIT":
$this->geogunit .= $data;
break;
case "HORIZDN";
$this->horizdn .= $data;
break;
case "ELLIPS";
$this->ellips .= $data;
break;
case "CNTORG";
$this->cntorg .= $data;
break;
case "ADDRESS";
$this->address .= $data;
break;
case "CITY";
$this->city .= $data;
break;
case "STATE";
$this->state .= $data;
break;
case "COUNTRY";
$this->country .= $data;
break;
case "CNTVOICE";
$this->cntvoice .= $data;
break;
case "CNTEMAIL";
$this->cntemail .= $data;
break;
case "TITLE";
$this->title .= $data;
break;
case "PLACEKEY";
$this->placekey .= $data;
break;
case "BEGDATE";
$this->begdate .= $data;
break;
case "ENDDATE";
$this->enddate .= $data;
break;
case "CNTPER";
$this->cntper .= $data;
break;
}

}
}

}

$xml_parser = xml_parser_create();
$metadata_parser = new XMLParser();

86

xml_set_object($xml_parser,&$metadata_parser);
xml_set_element_handler($xml_parser, "startElement", "endElement");
xml_set_character_data_handler($xml_parser, "characterData");

$fp = fopen($metadata, 'r') or die("<div class=\"errormegabox\"><div
class=errorbox>\n<div class=errortitle>ERROR:</div>\n<div
class=errorcontent><img src=\"./images/error.gif\" style=\"float:left;margin-
right:10px;\">\n Could not read the file. You need to go through the Metadata
Parser Wizard again.\n</div></div></div>\n\n");

if(!$fp)
{

echo "<div class=\"errormegabox\"><div class=errorbox>";
 echo "<div class=errortitle>ERROR:</div><div class=errorcontent><img
src=\"./images/error.gif\" style=\"float:left;margin-right:10px;\"> Couldn't
actually open the file you chose. Is it being used by something else right now?
</div>";

echo "</div></div>";
 exit;
}

while ($data = fread($fp, 4096))
xml_parse($xml_parser, $data, feof($fp))

or die(sprintf("<div class=\"errormegabox\"><div class=errorbox><div
class=errortitle>ERROR:</div><div class=errorcontent><img
src=\"./images/error.gif\" style=\"float:left;margin-right:10px;\">XML error: %s
at line %d</div></div></div>",

xml_error_string(xml_get_error_code($xml_parser)),
xml_get_current_line_number($xml_parser)));

fclose($fp);
xml_parser_free($xml_parser);
?>

PARSERS/FGDC_L ISTVIEW .PHP
<?php
/*
Parser official title: (always on line 4, HTML formatted)
FGDC List View (Experimental)

Author: (always on line 7, HTML tags supported)
Julien McArdle
*/
?>

<?php
/*
Function findbutton lists all the images in a directory (minus their file
extention.) It then uses those images as a the search parameter in the string of
your choice. The function takes in two input variables: the subdirectory you
want to look into, and the string you want to use the search paramater on. The
subdirectory is appended to the base directory of this PHP script, and then into
the images/buttons/ directory.

Once the script succesfully finds a match, it'll return the image pertaining to

87

the succesful search parameter. So for instance, let's take the directory is
"geoform", and the string to look is "Vectorial Data." Well in the directory
geoform are four images: vec.jpg, raster.jpg, tabular.jpg, and unknown.jpg. The
script will find that "vec" is indeed found in the string. and will therefore
output vec.jpg. If it can't fnd a match, it returns the text "not found",
which the parser then uses accordingly. Sometimes the parser will display the
image "unknown.jpg", other times it will proceed to look in another folder.
*/

function findbutton($subdir, $stringtosearch) {
$cwd = getcwd();
$dir = "$cwd/images/buttons/$subdir";
$found = "no";

if (is_dir($dir)) {
if ($dh = opendir($dir)) {

while (($file = readdir($dh)) !== false) {
if ($file != "." && $file != ".." && $file !=

"Thumbs.db") {
$nakedfile = substr($file, 0, strrpos($file, '.'));

if (preg_match("/$nakedfile/i",
$stringtosearch)) {

return "<img src=\"$dir/$file\"
class=\"buttonsmall\">";

$found = "yes";
}

}
}
closedir($dh);

}
}

if ($found == "no") {
return "nothing found";
}

}
?>

<?php

/*
The opening information.
*/
$divID = idgen(8);
$divID2 = idgen(8);
$divID3 = idgen(8);
echo "<div class=\"metablock\">\n";
echo "<div class=\"contacttitle\">";
echo "
\n";
echo "<div id=\"$divID2\"></
div>\n";
echo "<div id=\"$divID3\" style=\"display: none\"><img
src=\"./images/expand.png\" class=\"expand\"></div>\n";
echo " Description of FGDC List View</div>\n";

88

echo "<div id=\"$divID\" class=\"descriptioncontent\">\n";
echo "This parser was created for demonstration purposes only. It's intent is
\n";
echo "to demonstrate a more functional application of parsing metadata files.
\n";
echo "In this case, it displays and processes all the metadata files found in
the \n";
echo "same directory as the file you chose. If a picture doesn't load, right
click it, and select\n";
echo "Show Picture.\n";
echo "</div></div>\n\n";

$divID = idgen(8);
$divID2 = idgen(8);
$divID3 = idgen(8);
echo "<div class=\"metablock\">\n";
echo "<div class=\"metatitle\">\n";
echo "
\n";
echo "<div id=\"$divID2\"></
div>\n";
echo "<div id=\"$divID3\" style=\"display: none\"><img
src=\"./images/expand.png\" class=\"expand\"></div>\n";
echo "Metadata Files</div>\n";

echo "<div id=\"$divID\" style=\"text-align: left\">\n";

/*
The actual parser.
*/
$metadata = $metadatafile;

class XMLParser {

var $insideitem = false;

function startElement($parser, $tagName, $attrs) {
if ($this->insideitem) {

$this->tag = $tagName;
} elseif ($tagName == "IDINFO") {

$this->insideitem = true;
}

}

function endElement($parser, $tagName) {
if ($tagName == "IDINFO") {

$title = trim($this->title);

echo "$title
 $this-
>sername";

echo "<div class=\"smallbuttonsbox\">";

89

$titledataout = findbutton("data", $this->title);
if ($titledataout == "nothing found") {

$seriesdataout = findbutton("data", $this-
>sername);

if ($seriesdataout == "nothing found") {
echo "<img src=\"./images/buttons/data/

unknown.jpg\" class=\"buttonsmall\">\n";
} else {
echo "$seriesdataout \n";
}

} else {
echo "titledataout \n";

}

$geoformout = findbutton(geoform, $this->geoform);
if ($geoformout == "nothing found") {

echo "<img
src=\"./images/buttons/geoform/unknown.jpg\" class=\"buttonsmall\">\n";

} else {
echo "$geoformout\n";

}

$localplaceout = findbutton("place/local", $this-
>placekey);

if ($localplaceout == "nothing found") {
$provincialplaceout =

findbutton("place/provincial", $this->placekey);
if ($provincialplaceout == "nothing found") {

$nationalplaceout =
findbutton("place/national", $this->placekey);

if ($nationalplaceout == "nothing
found") {

echo "<img
src=\"./images/buttons/place/unknown.jpg\" class=\"buttonsmall\">\n";

} else {
echo "$nationalplaceout \n";
}

} else {
echo "$provincialplaceout \n";
}

} else {
echo "$localplaceout \n";

}

echo "</div>";

$this->title = $this->sername = $this->geoform = $this-
>placekey = "";

$this->begdate = $this->enddate = $this->cntper = "";
$this->cntorg = $this->address = $this->city = $this->state =

"";
$this->country = $this->cntvoice = $this->cntemail = "";
$this->insideitem = false;

}
}

90

function characterData($parser, $data) {
if ($this->insideitem) {

switch ($this->tag) {
case "SERNAME":
$this->sername .= $data;
break;
case "GEOFORM":
$this->geoform .= $data;
break;
case "GEOGUNIT":
$this->geogunit .= $data;
break;
case "TITLE";
$this->title .= $data;
break;
case "PLACEKEY";
$this->placekey .= $data;
break;
case "BEGDATE";
$this->begdate .= $data;
break;
case "ENDDATE";
$this->enddate .= $data;
break;
}

}
}

}

/*
This code finds out what directory the file the user selected was in. It then
checks that directory for other XML files. If it finds any, it parses them and
calls the code above.
*/
$basedirectory = substr($metadatafile, 0, strrpos($metadatafile, '\\\\'));
$listclass = listitem_grey;

if (is_dir($basedirectory)) {
if ($dh = opendir($basedirectory)) {

while (($file = readdir($dh)) !== false) {
$filename = strtolower($file) ;
$exts = split("[/\\.]", $filename) ;
$n = count($exts)-1;
$exts = $exts[$n];
$basedirectory = trim($basedirectory);
$file = trim($file);
$metadata = "$basedirectory\\\\$filename";

if (ereg("xml", $metadata)) {

if ($listclass == "listitem_white") {
$listclass = "listitem_grey";
} else {
$listclass = "listitem_white";
}

91

echo "<div class=\"$listclass\">\n";
$xml_parser = xml_parser_create();
$metadata_parser = new XMLParser();
xml_set_object($xml_parser,&$metadata_parser);
xml_set_element_handler($xml_parser, "startElement",

"endElement");
xml_set_character_data_handler($xml_parser, "characterData");
$fp = fopen($metadata, 'r') or die("<div

class=\"errormegabox\"><div class=errorbox>\n<div class=errortitle>ERROR:</div>\
n<div class=errorcontent><img src=\"./images/error.gif\"
style=\"float:left;margin-right:10px;\">\n Could not read the file. You need to
go through the Metadata Parser Wizard again.\n</div></div></div>\n\n");

if(!$fp) {
echo "<div class=\"errormegabox\"><div class=errorbox>";

 echo "<div class=errortitle>ERROR:</div><div
class=errorcontent><img src=\"./images/error.gif\" style=\"float:left;margin-
right:10px;\"> Couldn't actually open the file you chose. Is it being used by
something else right now?</div>";

echo "</div></div>";
 exit;

}

while ($data = fread($fp, 4096))
xml_parse($xml_parser, $data, feof($fp))

or die(sprintf("<div class=\"errormegabox\"><div
class=errorbox><div class=errortitle>ERROR:</div><div class=errorcontent><img
src=\"./images/error.gif\" style=\"float:left;margin-right:10px;\">XML error: %s
at line %d</div></div></div>",

xml_error_string(xml_get_error_code($xml_parser)),
xml_get_current_line_number($xml_parser)));

fclose($fp);
xml_parser_free($xml_parser);
echo "\n</div>\n\n";
}

}
closedir($dh);
}
}

?>

SCRIPTS/F INDBUTTON .PHP
<?php
/*
Function findbutton lists all the images in a directory (minus their file
extention.) It then uses those images as a the search parameter in the string of
your choice. The function takes in two input variables: the subdirectory you
want to look into, and the string you want to use the search paramater on. The
subdirectory is appended to the base directory of this PHP script, and then into
the images/buttons/ directory.

Once the script succesfully finds a match, it'll return the image pertaining to

92

the succesful search parameter. So for instance, let's take the directory is
"geoform", and the string to look is "Vectorial Data." Well in the directory
geoform are four images: vec.jpg, raster.jpg, tabular.jpg, and unknown.jpg. The
script will find that "vec" is indeed found in the string. and will therefore
output vec.jpg. If it can't fnd a match, it returns the text "not found",
which the parser then uses accordingly. Sometimes the parser will display the
image "unknown.jpg", other times it will proceed to look in another folder.
*/

function findbutton($subdir, $stringtosearch) {
$cwd = getcwd();
$dir = "$cwd/images/buttons/$subdir";
$found = "no";

if (is_dir($dir)) {
if ($dh = opendir($dir)) {

while (($file = readdir($dh)) !== false) {
if ($file != "." && $file != ".." && $file !=

"Thumbs.db") {
$nakedfile = substr($file, 0, strrpos($file, '.'));

if (preg_match("/$nakedfile/i",
$stringtosearch)) {

return "<img src=\"$dir/$file\"
class=\"button\">";

$found = "yes";
}

}
}
closedir($dh);

}
}

if ($found == "no") {
return "nothing found";
}

}
?>

SCRIPTS/ IDGEN .PHP
<?php
/*
This is the ID Generator code. It'll create a string of random alphanumeric
character of a user-defined length. This code is used extensively in the FGDC
parser as a means to create unique ID values for the DIV tags. Without unique
values, there would be no way to target unique DIVs to expand/collapse upon
request.
*/

 function assign_rand_value($num)
 {
 // accepts 1 - 36
 switch($num)
 {
 case "1":
 $rand_value = "a";

93

 break;
 case "2":
 $rand_value = "b";
 break;
 case "3":
 $rand_value = "c";
 break;
 case "4":
 $rand_value = "d";
 break;
 case "5":
 $rand_value = "e";
 break;
 case "6":
 $rand_value = "f";
 break;
 case "7":
 $rand_value = "g";
 break;
 case "8":
 $rand_value = "h";
 break;
 case "9":
 $rand_value = "i";
 break;
 case "10":
 $rand_value = "j";
 break;
 case "11":
 $rand_value = "k";
 break;
 case "12":
 $rand_value = "l";
 break;
 case "13":
 $rand_value = "m";
 break;
 case "14":
 $rand_value = "n";
 break;
 case "15":
 $rand_value = "o";
 break;
 case "16":
 $rand_value = "p";
 break;
 case "17":
 $rand_value = "q";
 break;
 case "18":
 $rand_value = "r";
 break;
 case "19":
 $rand_value = "s";
 break;
 case "20":

94

 $rand_value = "t";
 break;
 case "21":
 $rand_value = "u";
 break;
 case "22":
 $rand_value = "v";
 break;
 case "23":
 $rand_value = "w";
 break;
 case "24":
 $rand_value = "x";
 break;
 case "25":
 $rand_value = "y";
 break;
 case "26":
 $rand_value = "z";
 break;
 case "27":
 $rand_value = "0";
 break;
 case "28":
 $rand_value = "1";
 break;
 case "29":
 $rand_value = "2";
 break;
 case "30":
 $rand_value = "3";
 break;
 case "31":
 $rand_value = "4";
 break;
 case "32":
 $rand_value = "5";
 break;
 case "33":
 $rand_value = "6";
 break;
 case "34":
 $rand_value = "7";
 break;
 case "35":
 $rand_value = "8";
 break;
 case "36":
 $rand_value = "9";
 break;
 }
 return $rand_value;
 }

 function idgen($length)
 {

95

 if($length>0)
 {
 $rand_id="";
 for($i=1; $i<=$length; $i++)
 {
 mt_srand((double)microtime() * 1000000);
 $num = mt_rand(1,36);
 $rand_id .= assign_rand_value($num);
 }
 }
 return $rand_id;
 }

?>

96

